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4o'. ~1 y2(1 +y~)dyq 
R~'(I) = 1 -  

re ~o [( l+y~)Z- , 2 4a?4 yq] 

= 1 - 4 a ~  flo [1 + a a  { Yq 
zc (y2_ 2crayq + 1) 

_ Yq } 
( yZq + 2a a yq + 1 ) 

--½ -(y~--20"-ayq+ 1) + (yZq+2aayq+ 1) 

x dy o . (A-26) 

Making use of equations (70), (75) and (672) of 
Peirce & Foster (1966) in (A-26) and simplifying, we 
obtain 

__[ °a R'~(I) = 2a~ 4aBzc 1 + -~2 log~ ~-1 + aa 

(A-27) 

Substituting for the p.d.f, ofyq as obtained from Table 
(1 b) of SR in (A-25), changing the variable of integra- 
tion to x=y~ and using the result in (A-24) we can 
show for the NC case that 

ll (x z + x)dx (A-28) 
R~'(I) = 1 - 2 a  2 [i q22(1 ,2a])x  + x2] 3/2 " 

Making use of equations (2.264-6) and (2.264-7) on 
p. 83 and equation (2.261) on p. 81 of Gradshteyn & 
Ryzhik (1965) we can show that (A-28) reduces to 

R ; ( I ) = 2 a n [ 1 - a n l o g e \  o'n ) ] "  ( l + a B  (A-29) 

References 

BOOTH, A. D. (1945). Phil. Mag. 36, 609-615. 
CHANDRASEKHARAN, R. & SRINIVASAN, R. (1969). Z. Kri- 

stallogr. 129, 435-450. 
ERDELYI, A. (1954). Editor: Tables of Integral Transforms, 

Vol. 1. New York: McGraw-Hill. 
GRADSHTEYN, I. S. t% RYZHIK, I. M. (1965). Tables of  In- 

tegrals, Series and Products. New York: Academic Press. 
International Tables for X-ray Crystallography (1959). Vol. 

II, p. 332. Birmingham: Kynoch Press. 
LUZZATI, V. (1952). Acta Cryst. 5, 802-810. 
PARTHASARATHI, V. & PARTHASARATHY, S. (1975). Acta 

Cryst. A31, 38-41. 
PARTHASARATHY, S. • PARTHASARATHI, V. (1972). Acta 

Cryst. A28, 426-432. 
PARTHASARATHY, S. ~. PARTHASARATHI, V. (1974). Acta 

Cryst. A30, 43-46. 
PARTHASARATHY, S. & SRINIVASAN, R. (1967). Indian J. 

Pure Appl. Phys. 5, 502-510. 
PEIRCE, B. O. & FOSTER, R. M. (1966). A Short Table of  

Integrals. New Delhi: Oxford & IBH. 
SNEDDON, I. N. (1961). Special Functions of Mathematical 

Physics and Chemistry. London: Oliver & Boyd. 
SRIKRISHNAN, T. & SRINIVASAN, R. (1968). Z. Kristallogr. 

127, 427-441. 
SRINIVASAN, R. & RAMACHANDRAN, G. N. (1965a). Acta 

Cryst. 19, 1003-1007. 
SRINIVASAN, R. & RAMACHANDRAN, G. N. (1965b). Acta 

Cryst. 19, 1008-1014. 
SRINIVASAN, R. & RAMACHANDRAN, G. N. (1966). Acta 

Cryst. 20, 570-571. 
SRINIVASAN, R. & SRIKRISHNAN, T. (1966). Z. Kristallogr. 

123, 382-387. 
SRINIVASAN, R., SUBRAMANIAN, E. & RAMACHANDRAN, G. 

N. (1964). Acta Cryst. 17, 1010-1014. 
WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 
WILSON, A. J. C. (1969). Acta Cryst. B25, 1288-1293. 

Acta Cryst. (1975). A31, 185 

Debye Temperatures of KI and RbI and the Anharmonie Parameters 
of their Potential Functions 
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Debye temperatures of potassium iodide and rubidium iodide have been determined by X-ray diffraction 
from room temperature up to about 800 K with methods due to Paskin [Acta Cryst. (1957), 10, 667-669] 
and Chipman [J. Appl. Phys. (1960), 31, 2012-2015]. The anharmonic contribution to the Debye 0 up 
to about 650 K is shown to arise essentially from thermal expansion. The plot of the reduced thermal 
e x p a n s i o n  O~/OCm/2 versus T/Aa202 is a common curve. Here ¢¢,,/2 is the value of a at T= ½Tin, Tm being the 
melting point. A is the mean atomic weight and a is the lattice constant. The values of the anharmonic 
parameters Y0 in the potential energy function of Willis [Aeta Cryst. (1969), A25, 277-300] are found to 
be -0.065 x 10 -12 erg .~-4 for KI and -0.116 x 10 -12 erg A-4 for RbI. 

Introduction 

Variation of Debye temperature 0M with temperature 
for KI up to about 700K has been investigated by 

Pearman & Tompson (1967), by Vadets, Giller, Kovich 
& Fedyshin (1970) and by Geshka & Mikhalchenko 
(1971). A similar study for RbI from 6K to 370K has 
been made by Hovi & Pirinen (1972). However, a high- 
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temperature study of RbI has not been reported pre- 
viously. 

Experimental 

The experimental procedure is fully described by Pa- 
thak & Vasavada (1970) (hereinafter called paper I). 
The profiles of lines 400 and 420 were recorded on a 
chart recorder and planimetered. The background was 
determined by a method described by Mitra & Misra 
(1966). 

The basic equation from which the X-ray Debye 
temperature 0M is calculated (Pathak & Trivedi, 1973; 
hereinafter called paper I1) is 

mk 22 [ I  B' ] 
R -  12hZ (1-fl)  sin z0 l n ~ - l n B - 0  

To~o T~ sin z 0 
02Mo - .0~ si-nz-t) ° (1) 

where I and I0 are the measured integrated intensities 
at temperatures T and To and 0 is the Bragg angle. 
V and B' are respectively given by 

1 I x udu x 
V=-- f f  o e"---Z-11 + 4 

B ,=Npf  2 1 +cos 2 20 
~n2-0-2 -cos 0 

where x = OMIT, N is the number of unit-cells irradiated, 
p is the multiplicity factor and f is the atomic scatter- 
ing factor. 

The quantity (1 - f l )  takes into account the one- 
phonon thermal diffuse scattering (TDS) contribution 
to the measured intensity according to Chipman & 
Paskin (1959). The quantity for a f.c.c, crystal is given 
by 

(3) fl=½ acos 0 
2 

where a is the lattice constant and A is the length of 
the straight-line background expressed in radians. 

It can be seen from equation (1) that the values of 
0M at different temperatures can be found only if OMO 
at some reference temperature To (say room tempera- 
ture) is known. In this investigation the value of 0Mo 
is computed by two methods: (i) Pasldn's and (ii) Chip- 
man's. 

According to Paskin's (1957) method, if the tem- 
perature variation of 0~, is due to thermal expansion, 
the plot of In (1/Io) versus the reduced temperature 
T'[= T(a/ao)6q should be a straight line and the value 
of 0Mo can be obtained from the slope of this line 
(paper II). 

In the second method Chipman (1960) used the fact 
that the 0 versus T curves as determined from the 
elastic constants are approximately linear. Hence if one 
plots a family of 0 versus T curves with a series of ar- 

bitrary values of 00, one can assume that the curve 
with the smallest curvature is the correct one. 

Results and discussion 

The plots of In (Ir/IR) (IR = intensity at room tempera- 
ture) versus reduced temperature T'{T'= T(ar/aR) 6~} 
for line 400 are given in Figs. 1 and 2. Debye 0N at dif- 
ferent temperatures are presented in Figs. 3 and 4. 
The values of 0M in the plots are averages of those cor- 
responding to lines 420 and 400. 

Since the plots of In (Ir/IR) versus reduced tempera- 
ture T' (Figs. 1, 2) are straight lines up to about 800K 
(reduced), it is evident that the anharmonic contribu- 
tion to the Debye 0 up to this temperature comes essen- 
tially from thermal expansion. 

TEMPERATURE (.°K) 
300 4 0 0  $00  6 0 0  7 0 0  800 900  I000  l IO0 1200 I . t00 

O ' O J ~ l  I I l I I I I I I 

KI(400) 

-0.4 

-0,8 

1.6 O 

Fig. 1. Temperature dependence of the quantity In (Ir/IR) for 
the 400 reflexion of KI. x In (It/In) versus absolute tem- 
perature. ® ln(Ir/IR) versus reduced temperature. 
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Fig. 2. Temperature dependence of the quantity ln(Ir/IR) for 
the 400 reflexion of RbI. x In (Ir/IR) versus absolute tem- 
perature. ® In (Ir/IR) versus reduced temperature. 
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The plot of the reduced thermal expansion a/~,./2 
versus T/AaZO 2 (Fig. 5) was found to give a common ' "  
straight line whose equation is 

I - 4  

0~/~,,/2=0"75+0"25 × 10 -11 T/Aa20 z. (2) 
I ,nt 

Here o~,,./2 is the thermal expansion at T=½Tm, I,, be- 
ing the melting temperature, A the mean atomic weight , .= 
and a the lattice constant. Thus it can be said that the ~. 
two halides follow the 'law of corresponding states'. ~ , . ,  

The general expression due to Willis (1969) for the ~" "°I 
potential of the Kth atom in a cubic crystalline field ' 
is given by 

0 ' 9  

v,,(u, u2u3)= Vo +½~,,r ~ + ,a,,u1 u~u3 
0 , 8  

q-rKr4-~-(~K(U4 + U4 q- U 4 - - ~ t  "4) (3) 

I00 I 

"[ 
~ o  I I I I I 1 

a o 0  4 0 0  sO0 ~00  7 0 0  e O0 

TEMPERATURE (~g)  

Fig. 3. Debye 0 (average) versus temperature:  KI. ® Paskin's 
method, x Chipman's  method. 
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Fig. 4. Debye 0 (average) versus temperature: RbI. ® Pas- 
kin's method, x Chipman's  method. 
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Fig. 5. Common plot of reduced expansion g/~,,/z versus 
T/Aa20 z for KI  and RbI. 

where rZ= U~ + U~ + UI. flr=O when the atomic site 
coincides with the centre of symmetry. JK is the an- 
isotropic term taken to be zero in the present case. 

The potential parameters c~ and 9' are temperature- 
dependent, their relations with temperature being given 
by 

I I 
. . . . .  (1 + 2yozT) 

6C 0C o 
o r  

= 0c0(1 - 2yGzT) 

with a similar expression for 9'. Here ~0 is the value of 
in the absence of expansion and it is assumed that 

29'GzT~ 1.9'a is the Grfineisen constant and 2" the vol- 
ume coefficient of expansion. 

Now 

s~ffO- In (Ir/IR)=2[B(T)-B(TR)]. (4) 

B(T) is the Debye-Waller factor at temperature T and 
TR the room temperature. Willis (1969) has shown that 

F / ~o \'1 
(5) 

where k8 is the Boltzmann constant and Bh(T) the 
harmonic B factor given by 

8z~ZkBT 
Bh(T) . . . . . . .  . (6) 

~x o 

Figs. 6 and 7 represent the plots of (2/sin 0) 2 In (Ir/IR) 
versus T. 
Experimental points are plotted as circles. The curve A 
corresponds to the harmonic Debye-Waller theory. 
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Curve B is drawn using equation (5) in its quasi har- 
monic form, that  is by retaining the thermal expansion 
term but writing ~,0/c~ =0 .  Curve C represents the an- 
ha rmonic  form of equation (5) with ~,0/c~2=-0.0498 
X 1012 erg -1 for KI  and yo/C~Zo = - 0 . 1 1 6  x lO 12 erg -1 for 
RbI.  These values were chosen so as to make  the an- 
harmonic  curve pass through the experimental points 
at the highest temperature where the influence of  an- 
harmonici ty is greatest. 

The harmonic  parameters  e0 were calculated from 
equation (6) and were found to be 1.142 x 10 -12 e rgA -2 
for KI  and 1.001 x 10 -12 erg A -2 for RbI. These values 
give 

?0 = - 0 . 0 6 5  x 10 -12 erg A -4 for KI  
and 

70 = - 0 . 1 1 6  x 10 -12 erg A -4 for  R b l .  

The value of  Bh(T) for KI  was obtained f rom Pearman 
& Tompson  (1967) and that  for RbI  from Govindara-  
jan  (1973). The Grfineisen constants were taken from 
Born & Huang  (1954) and the expansion coefficients 
f rom Pa thak  & Pandya (1975). 
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Fig. 6. The logarithm of the integrated intensities from KI 
plotted against temperature. Experimental points are shown 
as circles. Curve A was calculated using the harmonic 
Debye-Waller theory; curve B was calculated using the 
quasiharmonic theory to include the effect of thermal ex- 
pansion; curve C was calculated using the anharmonic 
theory accounting for both thermal expansion and quartic 
anharmonicity. 
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Fig. 7. The logarithm of the integrated intensities from RbI 
plotted against temperature. Experimental points are shown 
as circles. Curve A was calculated using the harmonic 
Debye-Waller theory; curve B was calculated using the 
quasi-harmonic theory to include the effect of thermal ex- 
pansion; curve C was calculated using the anharmonic 
theory, accounting for both thermal expansion and quartic 
anharmonicity. 
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